Main content area

Newly isolated Nodularia phage influences cyanobacterial community dynamics

Coloma, S. E., Dienstbier, A., Bamford, D. H., Sivonen, K., Roine, E., Hiltunen, T.
Environmental microbiology 2017 v.19 no.1 pp. 273-286
Nodularia, Synechococcus, bacteriophages, biomass, ecology, evolution, genetic variation, nitrogen, nitrogen fixation, nutrients
Cyanophages, that is, viruses infecting cyanobacteria, are a key component driving cyanobacterial community dynamics both ecologically and evolutionarily. In addition to reducing biomass and influencing the genetic diversity of their host populations, they can also have a wider community‐level impact due to the release of nutrients by phage‐induced cell lysis. In this study, we isolated and characterized a new cyanophage, a siphophage designated as vB_NpeS‐2AV2, capable of infecting the filamentous nitrogen fixing cyanobacterium Nodularia sp. AV2 with a lytic cycle between 12 and 18 hours. The role of the phage in the ecology of its host Nodularia and competitor Synechococcus was investigated in a set of microcosm experiments. Initially, phage‐induced cell lysis decreased the number of Nodularia cells in the cultures. However, around 18%–27% of the population was resistant against the phage infection. Nitrogen was released from the Nodularia cells as a consequence of phage activity, resulting in a seven‐fold increase in Synechococcus cell density. In conclusion, the presence of the cyanophage vB_NpeS‐2AV2 altered the ecological dynamics in the cyanobacterial community and induced evolutionary changes in the Nodularia population, causing the evolution from a population dominated by susceptible cells to a population dominated by resistant ones.