PubAg

Main content area

Algorithm for Canal Gate Operation to Maintain Steady Water Levels Under Abrupt Water Withdrawal

Author:
Shang, Yizi, Shang, Ling
Source:
Irrigation and drainage 2016 v.65 no.5 pp. 741-749
ISSN:
1531-0353
Subject:
algorithms, control methods, equations, gates
Abstract:
Most studies on the design of an automated canal pool have produced fairly good results. However, when the designs are extended to multi‐pool canals, there is an inability to eliminate interactions between pools caused by gate start‐up and shutdown. This paper thus proposes a distributed computing gate operation algorithm for eliminating water level fluctuation and controlling the downstream water level of canal pools within a reasonable range. The algorithm was developed using state space equations derived from the complete Saint Venant equations by a finite difference scheme. This paper illustrates the application of the control method to a series of pools bounded by upstream and downstream gates. The effectiveness of the control was also verified by applying it to a laboratory canal, wherein the soft sensor technique was used to simplify communication between the distributed information nodes. The test results confirmed the ability of the proposed method to cope with rapid variations in water demand while maintaining water levels of the controlled pools. Copyright © 2016 John Wiley & Sons, Ltd.
Agid:
5881671