Main content area

FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng

Li, Yun, Zhang, Jin-Yu, Wang, Yuan-Zhong
Analytical and bioanalytical chemistry 2018 v.410 no.1 pp. 91-103
Panax notoginseng, algorithms, decision making, models, principal component analysis, provenance, spectral analysis, spectroscopy, traceability, China
Three data fusion strategies (low-llevel, mid-llevel, and high-llevel) combined with a multivariate classification algorithm (random forest, RF) were applied to authenticate the geographical origins of Panax notoginseng collected from five regions of Yunnan province in China. In low-level fusion, the original data from two spectra (Fourier transform mid-IR spectrum and near-IR spectrum) were directly concatenated into a new matrix, which then was applied for the classification. Mid-level fusion was the strategy that inputted variables extracted from the spectral data into an RF classification model. The extracted variables were processed by iterate variable selection of the RF model and principal component analysis. The use of high-level fusion combined the decision making of each spectroscopic technique and resulted in an ensemble decision. The results showed that the mid-level and high-level data fusion take advantage of the information synergy from two spectroscopic techniques and had better classification performance than that of independent decision making. High-level data fusion is the most effective strategy since the classification results are better than those of the other fusion strategies: accuracy rates ranged between 93% and 96% for the low-level data fusion, between 95% and 98% for the mid-level data fusion, and between 98% and 100% for the high-level data fusion. In conclusion, the high-level data fusion strategy for Fourier transform mid-IR and near-IR spectra can be used as a reliable tool for correct geographical identification of P. notoginseng. Graphical abstract The analytical steps of Fourier transform mid-IR and near-IR spectral data fusion for the geographical traceability of Panax notoginseng