Main content area

Effects of multiple mutualists on plants and their associated arthropod communities

Keller, KaneR., Carabajal, Sara, Navarro, Felipe, Lau, JenniferA.
Oecologia 2018 v.186 no.1 pp. 185-194
Chamaecrista fasciculata, Formicidae, arthropod communities, arthropods, carbon, field experimentation, herbivores, hosts, leaves, legumes, mutualism, nectar, nitrogen fixation
Although most studies of mutualisms focus on a single partner at a time, host species often associate with multiple mutualist partners simultaneously. Because of potential interactions between mutualists, only studying a single type of mutualism could lead to a biased perspective of mutualism benefit and how mutualisms may scale-up to affect communities. The legume Chamaecrista fasciculata engages in a resource mutualism with nitrogen-fixing rhizobia and also forms symbiotic interactions with ants by providing nectar in exchange for defense against herbivores. Although they provide very different benefits to the plant, both mutualists receive carbon resources from the plant. As a result, these two mutualists are likely to interact, potentially competing for carbon resources or mutually benefitting each other via their positive effects on plant hosts. In a full-factorial field experiment, we explored how rhizobia and ants influence one another, C. fasciculata fitness, and the associated arthropod community. Ants reduced plant allocation to rhizobia, but ants also increased rhizobia contamination of uninoculated plants, suggesting that ants may disperse rhizobia. In turn, rhizobia increased ant abundances, with ants preferentially tending plants with rhizobia. Chamaecrista fasciculata received substantial fitness benefits from rhizobia; in contrast, associating with ants reduced fitness. Additionally, the mutualists interacted to influence the abundance of other arthropods found on the plants. Rhizobia increased arthropod abundances, likely because more nitrogen-rich leaf tissue was more attractive to arthropod herbivores, but ants negated these increases. As these results illustrate, multiple mutualists may interact, influencing each other’s abundance and the abundance of other community members.