Main content area

Growth of Yersinia pseudotuberculosis Strains at Different Temperatures, pH Values, and NaCl and Ethanol Concentrations

Keto-Timonen, Riikka, Pontinen, Anna, Aalto-Araneda, Mariella, Korkeala, Hannu
Journal of food protection 2018 v.81 no.1 pp. 142-149
Yersinia pseudotuberculosis, absorbance, ethanol, genetic similarity, pH, serotypes, sodium chloride, temperature
Maximum growth temperature and growth limits in Luria-Bertani broth at different pH values and NaCl and ethanol concentrations were determined for 49 Yersinia pseudotuberculosis strains representing serotypes O:1, O:2, O:3, O:4, and O:5. In addition, the ability of the strains to grow at 0°C and the growth parameters at 1°C were determined. The maximum growth temperatures measured by Gradiplate temperature incubator varied between 42.2 and 43.7°C. All strains were able to grow at 0°C in Luria-Bertani broth within 17 days of incubation. At 1°C, differences were observed among strains in the maximum growth rates and area under the curve values based on optical density data, which suggests that some Y. pseudotuberculosis strains adapt faster to colder conditions. The mean maximum growth rates and area under the curve values at 1°C, as well as the mean maximum growth temperatures, were statistically significantly higher among serotype O:1 strains compared with O:3 strains and among biotype 1 compared with biotype 2 strains. All strains grew at pH 4.5, whereas none of the strains were able to grow at pH 4.2. The highest pH at which growth was observed varied between 9.0 and 9.3. For 14 strains the maximum NaCl concentration at which growth was observed was 4.8%, whereas 35 of the strains were able to grow at 5.0% NaCl. None of the strains showed growth at 5.2% NaCl. All strains were able to grow at 4.5% ethanol concentration (v/v), whereas 5.0% ethanol concentration was completely inhibitory to all strains. The observed limited physiological diversity among various Y. pseudotuberculosis strains may stem from the genetic homogeneity of the species.