PubAg

Main content area

Global estimation of long-term persistence in annual river runoff

Author:
Markonis, Y., Moustakis, Y., Nasika, C., Sychova, P., Dimitriadis, P., Hanel, M., Máca, P., Papalexiou, S.M.
Source:
Advances in water resources 2018 v.113 pp. 1-12
ISSN:
0309-1708
Subject:
dry environmental conditions, least squares, rivers, runoff, stochastic processes, stream flow, variance, water management, watersheds
Abstract:
Long-term persistence (LTP) of annual river runoff is a topic of ongoing hydrological research, due to its implications to water resources management. Here, we estimate its strength, measured by the Hurst coefficient H, in 696 annual, globally distributed, streamflow records with at least 80 years of data. We use three estimation methods (maximum likelihood estimator, Whittle estimator and least squares variance) resulting in similar mean values of H close to 0.65. Subsequently, we explore potential factors influencing H by two linear (Spearman's rank correlation, multiple linear regression) and two non-linear (self-organizing maps, random forests) techniques. Catchment area is found to be crucial for medium to larger watersheds, while climatic controls, such as aridity index, have higher impact to smaller ones. Our findings indicate that long-term persistence is weaker than found in other studies, suggesting that enhanced LTP is encountered in large-catchment rivers, were the effect of spatial aggregation is more intense. However, we also show that the estimated values of H can be reproduced by a short-term persistence stochastic model such as an auto-regressive AR(1) process. A direct consequence is that some of the most common methods for the estimation of H coefficient, might not be suitable for discriminating short- and long-term persistence even in long observational records.
Agid:
5908162