PubAg

Main content area

Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste

Author:
Jiang, Liqun, Zhang, Lijie, Nie, Changliang, Pei, Haiyan
Source:
Biotechnology for biofuels 2018 v.11 no.1 pp. 68
ISSN:
1754-6834
Subject:
Chlorella sorokiniana, algae culture, biofuels, energy conservation, feedstocks, freshwater, kitchen waste, lipid content, lipids, microalgae, nutrients, salinity, seawater, ultrastructure, wastewater
Abstract:
BACKGROUND: An economical strategy for producing microalgae as biofuel feedstock is driven by the freshwater and nutrients input. In this study, seawater was applied to limnetic algal cultivation and the behavior of algae in seawater media was observed including growth, lipid synthesis, and ultrastructure. To make seawater cater algae, a kind of wastewater, anaerobically digested effluent from kitchen waste (ADE-KW), was used as nutrient sources. RESULTS: Pure seawater cannot support the growth demand of freshwater microalga, due to high salinity and lack of nutrients. However, it is the conditions triggered the algae to synthesize lipids of 60%, double of lipid content in standard medium BG11. Introducing 3 or 5% ADE-KW (volume percentage) into seawater made algal growth reach the level attained in BG11, while lipid content compared favourably with the level (60%) in pure seawater. This method achieved the goal of fast growth and lipid accumulation simultaneously with the highest lipid productivity (19 mg/L day) at the exponential stage, while BG11 obtained 10.55 mg/L day at the stationary stage as the highest lipid productivity, almost half of that in seawater media. Moreover, the condition for highest lipid productivity enlarged algal cells compared to BG11. Under the condition for highest lipid productivity, Chlorella sorokiniana SDEC-18 had enlarged cells and increased settling efficiency compared to BG11, which facilitated harvest in an energy saving way. CONCLUSIONS: The results suggested that combining seawater with ADE-KW to cultivate microalgae had a double function: nutrients and water for algal growth, and high salinity for stimulating lipid accumulation. If this technology was operated in practice, freshwater and non-waste nutrient consumption would be completely obviated.
Agid:
5911344