Main content area

Molecular analysis of partial VP-2 gene amplified from rectal swab samples of diarrheic dogs in Pakistan confirms the circulation of canine parvovirus genetic variant CPV-2a and detects sequences of feline panleukopenia virus (FPV)

Ahmed, Nisar, Riaz, Adeel, Zubair, Zahra, Saqib, Muhammad, Ijaz, Sehrish, Nawaz-Ul-Rehman, Muhammad Shah, Al-Qahtani, Ahmed, Mubin, Muhammad
Virology journal 2018 v.15 no.1 pp. 45
Carnivore protoparvovirus 1, DNA, amino acid substitution, amino acids, diarrhea, dog diseases, dogs, food contamination, genes, genetic analysis, hybridization probes, immunoaffinity chromatography, ingestion, mixed infection, monitoring, mortality, phylogeny, polymerase chain reaction, sequence homology, vaccines, virulent strains, viruses, China, India, Japan, Pakistan, Portugal, South Africa, United States, Uruguay
BACKGROUND: The infection in dogs due to canine parvovirus (CPV), is a highly contagious one with high mortality rate. The present study was undertaken for a detailed genetic analysis of partial VP2 gene i.e., 630 bp isolated from rectal swab samples of infected domestic and stray dogs from all areas of district Faisalabad. Monitoring of viruses is important, as continuous prevalence of viral infection might be associated with emergence of new virulent strains. METHODS: In the present study, 40 rectal swab samples were collected from diarrheic dogs from different areas of district Faisalabad, Pakistan, in 2014–15 and screened for the presence of CPV by immunochromatography. Most of these dogs were stray dogs showing symptoms of diarrhea. Viral DNA was isolated and partial VP2 gene was amplified using gene specific primer pair Hfor/Hrev through PCR. Amplified fragments were cloned in pTZ57R/T (Fermentas) and completely sequenced. Sequences were analyzed and assembled by the Lasergene DNA analysis package (v8; DNAStar Inc., Madison, WI, USA). RESULTS: The results with immunochromatography showed that 33/40 (82%) of dogs were positive for CPV. We were able to amplify a fragment of 630 bp from 25 samples. In 25 samples the sequences of CPV-2a were detected showing the amino acid substitution Ser297Ala and presence of amino acid (426-Asn) in partial VP2 protein. Interestingly the BLAST analysis showed the of feline panleukopenia virus (FPV) sequences in 3 samples which were already positive for new CPV-2a, with 99% sequence homology to other FPV sequences present in GenBank. CONCLUSIONS: Phylogenetic analysis showed clustering of partial CPV-VP-2 gene with viruses from China, India, Japan and Uruguay identifying a new variant, whereas the 3 FPV sequences showed immediate ancestral relationship with viruses from Portugal, South Africa and USA. Interesting observation was that CPV are clustering away from the commercial vaccine strains. In this work we provide a better understanding of CPV prevailing in Pakistan at molecular level. The detection of FPV could be a case of real co-infection or a case of dual presence, due to ingestion of contaminated food.