PubAg

Main content area

Hyperspectral imaging for the determination of potato slice moisture content and chromaticity during the convective hot air drying process

Author:
Amjad, Waseem, Crichton, Stuart O.J., Munir, Anjum, Hensel, Oliver, Sturm, Barbara
Source:
Biosystems engineering 2018 v.166 pp. 170-183
ISSN:
1537-5110
Subject:
air, air drying, color, hyperspectral imagery, least squares, models, potatoes, prediction, thin-layer drying, water content, wavelengths
Abstract:
Hyperspectral imaging (HSI) was utilised for the determination of moisture content of potato slices with three thicknesses (5 mm, 7 mm, 9 mm) at three drying temperatures (50 °C, 60 °C, 70 °C) during convective drying in a laboratory hot air dryer. The Page, thin-layer drying model was found better to explain the drying kinetics with a fitting accuracy of R2 (0.96–0.99) and lowest reduced Chi-square (0.00024–0.00090), Root mean square errors (RMSE) (0.014–0.026), and relative percentage error (1.5%–5.1%) under the used drying conditions. Spectral data were analysed using partial least squares regression (PLS) analysis, a multivariate calibration technique, alongside Monte Carlo Uninformative Variable Elimination (MCUVE-PLS) and competitive adaptive reweighted sampling (CARS-PLS). The feasibility of both moisture content and CIELAB prediction with a reduced wavelength set from the Visible near-infrared (VNIR) region (500–1000 nm) was investigated with these three models. The PLS model (R2 = 0.93–0.98, RMSE = 0.16–0.36 and the lowest number of optimal wavelengths = 6, for all drying conditions) was found suitable to implement for the moisture visualisation procedure. Potato chromaticity was also shown to be predictable during drying using a similar number of wavelengths, with PLS models for CIELAB a* performing well (R2 = 0.91–0.65, RMSE = 0.61–1.78). PLS Models for CIELAB b* more variably (R2 = 0.91–0.62, RMSE = 2.16–4.42) due to potato colour mainly varying along this axis. The current study showed that hyperspectral imaging was a useful tool for non-destructive measurement and visualisation of the moisture content and chromaticity during the drying process.
Agid:
5915147