Main content area

A case study of mining-induced impacts on the stability of multi-tunnels with the backfill mining method and controlling strategies

Sun, Qiang, Zhang, Jixiong, Zhang, Qiang, Yan, Hao
Environmental earth sciences 2018 v.77 no.6 pp. 234
backfilling, case studies, coal, deformation, engineering, finite element analysis, models, roads, underground mining, China
Deep mining practices are jeopardized by the recurrent instability and failure of roadways/multi-tunnels. This paper describes a case study of the mining-induced impacts on the stability and control strategy of overlying multi-tunnels with backfill mining in the Ping Dingshan No. 10 Coal Mine in Henan Province, China. To reveal the dynamic impacts of coal mining on the stability of overlying multi-tunnels, particularly in the process of mining cycle and after the overlying strata long-term stability period, a 3D finite element model was applied to explore the effect of longwall panel width, advancing distance, and backfill material’s compaction ratio (BMCR) on the multi-tunnels’ deformation characteristics. The results obtained demonstrate that failure and deformation of the overlying multi-tunnels become more pronounced with the increased longwall panel width and advancing distance, as well as with BMCR reduction. The ranking of deformation degree in the overlying multi-tunnels is as follows: main haulage roadway > auxiliary haulage roadway > main inclined shaft > rock crosscut > auxiliary inclined shaft. Using a 2D physical simulation experiment, a comprehensive analysis method and engineering design concept for the stability control of overlying multi-tunnels with backfill mining are put forward based on further research of the deformation characteristics of multi-tunnels using caving and backfilling method. The results obtained are instrumental to the stability control of overlying tunnels in deep mining practices with similar conditions.