U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Agricultural residues are efficient abrasive tools for weed control

Manuel Perez-Ruiz, Rocío Brenes, Jose M. Urbano, David C. Slaughter, Frank Forcella, Antonio Rodríguez-Lizana
Agronomy for sustainable development 2018 v.38 no.2 pp. 18
Amaranthus retroflexus, Centaurea cyanus, Chenopodium murale, almond shells, application rate, control methods, corn cobs, crops, farmers, grape seeds, herbicide-resistant weeds, herbicides, laboratory experimentation, mass flow, olives, organic production, poultry manure, sand, seedlings, soybean meal, sugar beet, tomatoes, walnut hulls, weed control, xenobiotics
Non-chemical control of weeds is essential for organic farming and is a potential solution to address herbicide-resistant weeds, but too few non-chemical control methods exist. Consumers, farmers, and regulators want organic produce, new tools, and fewer xenobiotics. New weed management strategies focused on the integration of different tools, and strategies are needed to minimize dependence on broad-spectrum herbicides. Accordingly, we assessed abrasive grits from eight agricultural sources (almond shell, grape seed, maize cob, olive seed, poultry manure, sand, soybean meal, and walnut shell) as weed-abrading materials when delivered at high air pressures. Grit efficacies were determined in laboratory trials on weeds common to tomato, sugar beet, and olive: Amaranthus retroflexus L., Chenopodium murale L., and Centaurea cyanus L., respectively. Additionally, application rates and costs of residues were estimated. Control of two- to three-leaf stage weed seedlings ranged from 30 to 100%. In 88% of the trials, weed control exceeded 80%. Except for sand, the effectiveness of the grits was not species dependent. Significant differences in the mass flow of grits suggested that effective doses may vary up to 100% among grit materials. The residue yield ratio (percent control per gram of grit) varied among residues, ranging from 2.8 to 7.1% g⁻¹. We demonstrate that the best combination of weed control, grit dose, and residue yield ratio was provided by maize cob and olive seed, with control rates of 93 and 90%, respectively. This pioneering study simultaneously assessed residues from both herbaceous and woody crops as well as animal wastes and indicated that a more efficient and effective use of these resources for weed control is feasible.