Main content area

Metabolite and transcript markers for the prediction of potato drought tolerance

Sprenger, Heike, Erban, Alexander, Seddig, Sylvia, Rudack, Katharina, Thalhammer, Anja, Le, Mai Q., Walther, Dirk, Zuther, Ellen, Köhl, Karin I., Kopka, Joachim, Hincha, Dirk K.
Plant biotechnology journal 2018 v.16 no.4 pp. 939-950
Solanum tuberosum, algorithms, climate change, crop yield, cultivars, data collection, drought, drought tolerance, environmental impact, field experimentation, food crops, gas chromatography-mass spectrometry, leaves, marker-assisted selection, metabolites, models, phenotype, potatoes, prediction, quantitative polymerase chain reaction, reverse transcriptase polymerase chain reaction, sequence analysis, starch, tubers, water stress, water supply
Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker‐assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT‐PCR and GC‐MS profiling, respectively. Transcript marker candidates were selected from a published RNA‐Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.