Main content area

Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism

Wang, Peifang, You, Guoxiang, Hou, Jun, Wang, Chao, Xu, Yi, Miao, Lingzhan, Feng, Tao, Zhang, Fei
Water research 2018 v.133 pp. 208-217
Pseudomonas, bacteria, biofilm, cell viability, ceric oxide, chronic exposure, microaggregates, molecular weight, nanoparticles, polysaccharides, wastewater, wastewater treatment
With the accelerated application of CeO2 nanoparticles (NPs), wastewater treatment plants will increasingly receive CeO2 NPs, thus inevitably causing CeO2 NPs to encounter microaggregates. Here, we comprehensively elucidate the responses in the structural, physicochemical and microbial properties of wastewater biofilms to chronic exposure (75 days) to different CeO2 NPs concentrations, with a particular emphasis on the protective mechanisms of stratified extracellular polymeric substances (EPSs). Chronic exposure to 0.1 mg/L CeO2 NPs boosted the content and broadened the distribution of α-d-glucopyranose polysaccharides (PS), while the sharply increased production and breadth of β-d-glucopyranose PS, forming a formidable shield, was a response to 10 mg/L CeO2 NPs. After the bacteria were exposed to CeO2 NPs, loosely bound EPSs (LB-EPSs) aggregated into macromolecules (increasing in apparent molecular weight (AMW)) but at a lower abundance, whereas the average AMW in tightly bound EPSs (TB-EPSs) decreased. The acetyl content and (α-helix+3-turn helix)/β-sheet value of TB-EPSs increased to resist CeO2 NPs. Furthermore, long-term exposure to CeO2 NPs decreased cell viability, reduced microbial diversity and shifted the microbial composition. N-acylated-l-homoserine lactone concentrations increased with increased density of Pseudomonas, which was associated with PS-regulated control, thus promoting PS production in EPSs in response to CeO2 NPs. These results expand the understanding of how microaggregates resist environmental stress caused by NPs.