U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Narasin effects on energy, nutrient, and fiber digestibility in corn-soybean meal or corn-soybean meal-dried distillers grains with solubles diets fed to 16-, 92-, and 141-kg pigs

Author:
B. Kerr, S. Trabue, D. Andersen
Source:
Journal of animal science 2017 v.95 no.9 pp. 4030-4036
ISSN:
1525-3163
Subject:
acid detergent fiber, calcium, corn meal, digestibility, distillers grains, energy, experimental diets, feces, finishing, gilts, growth performance, metabolism, narasin, neutral detergent fiber, nutrients, phosphorus, soybean meal, swine feeding
Abstract:
Three experiments were conducted to determine the effect of narasin on growth performance and on GE and nutrient digestibility in nursery, grower, and finishing pigs fed either a corn-soybean meal (CSBM) diet or a CSBM diet supplemented with distillers dried grains with solubles (DDGS), in combination with either 0 or 30 mg narasin/kg of diet. In Exp. 1 (64 gilts, initial BW = 9.0 kg, SD = 1.0 kg) and Exp. 2 (60 gilts. initial BW = 81.1 kg, SD = 6.1 kg), gilts were allotted into individual pens and fed their experimental diets for 24 and 21 d, respectively. On the last 2 d of each experiment, fecal samples were collected to assess apparent total tract digestibility (ATTD) of GE and various nutrients. In Exp. 3, 2 separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates and fed their experimental diets for 30 d prior to a time-based 6-d total fecal collection period to assess GE and nutrient digestibility. In Exp. 1, there was an interaction between diet type and narasin addition for G:F and for many of the ATTD coefficients measured. When narasin was supplemented to the CSBM diet, ATTD of GE, DM, C, S, phosphorus, NDF, and ADF was either not changed or reduced, while when narasin was supplemented to DDGS diets, these same ATTD parameters were increased (interaction, ≤ 0.05). Even though ADG and ADFI were not affected, G:F was improved in pigs fed the CSBM diet with supplemental narasin, but was reduced in pigs fed the DDGS diet with supplemental narasin (interaction, < 0.05). In Exp. 2, there was an interaction between diet type and narasin supplementation only for ATTD of Ca (interaction, < 0.01), in that narasin supplementation did not change the ATTD of Ca in pigs fed the CSBM diet, while narasin supplementation reduced the ATTD of Ca in pigs fed the DDGS containing diet. In Exp. 3, there was an interaction between diet and narasin only for ATTD of C (interaction, < 0.01) in that narasin supplementation resulted in an increased ATTD of C in pigs fed the CSBM diet, while narasin supplementation to the DDGS containing diet resulted in a reduced ATTD of Ca. In general, the data indicate that narasin interacted with and had its largest effect on pig performance and GE or nutrient digestibility in 9 to 23 kg pigs compared to pigs weighing greater than 80 kg. The data also indicate that the addition of DDGS reduced GE, DM, Ca, and N digestibility, regardless of BW.
Agid:
5927844
Handle:
10113/5927844