PubAg

Main content area

Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process

Author:
Yao, Weikun, Ur Rehman, Syed Waqi, Wang, Huijiao, Yang, Hongwei, Yu, Gang, Wang, Yujue
Source:
Water research 2018 v.138 pp. 106-117
ISSN:
0043-1354
Subject:
chloramphenicol, clofibric acid, diclofenac, energy efficiency, energy use and consumption, gemfibrozil, groundwater, hydrogen peroxide, hydroxyl radicals, ibuprofen, oxidation, ozonation, ozone, persistent organic pollutants, surface water, ultraviolet radiation, wastewater, wastewater treatment
Abstract:
The electro-peroxone (E-peroxone) process is an emerging ozone-based advanced oxidation process (AOP) that has shown large potential for micropollutant abatement in water treatment. To evaluate its performance under more realistic conditions of water treatment, a continuous-flow pilot E-peroxone system was developed and compared with conventional ozonation and a UV/O3 process for micropollutant abatements in various water matrices (groundwater, surface water, and secondary wastewater effluent) in this study. With a specific ozone dose of 1.5 mg O3/mg DOC, micropollutants that have high and moderate reactivity with ozone (O3) (diclofenac, naproxen, gemfibrozil, and bezafibrate) could be sufficiently abated (>90% abatement) in the various waters by all three processes. However, ozone-resistant micropollutants (ibuprofen, clofibric acid, and chloramphenicol) were abated only by ∼32–68%, 68–91%, and 73–90% during conventional ozonation of the selected groundwater, surface water, and secondary wastewater effluent, respectively. By electro-generating H2O2 or applying UV irradiation to enhance O3 transformation to •OH during ozonation, the E-peroxone and UV/O3 processes similarly enhanced the abatement efficiencies of ozone-resistant micropollutants by ∼15–43%, ∼5–15%, and ∼5–10% in the groundwater, surface water, and secondary wastewater effluent, respectively. In addition, the E-peroxone and UV/O3 processes significantly reduced bromate formation during the treatment of the three waters compared to conventional ozonation. Due to its higher efficiency, the E-peroxone process reduced ∼10–53% of the energy consumption required to abate the concentration of chloramphenicol (the most ozone-resistant micropollutant spiked in the waters) by 1 order of magnitude in the three waters compared to conventional ozonation. In contrast, the UV/O3 process consumed approximately 4–10 times higher energy than conventional ozonation. This pilot-scale study demonstrates that the E-peroxone process can provide a feasible, effective, and energy-efficient alternative for micropollutant abatement and bromate control in water and wastewater treatment.
Agid:
5929848