PubAg

Main content area

Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture

Author:
Lee, Sangseok, I. Sergeeva, Lidiya, Vreugdenhil, Dick
Source:
Journal of integrative plant biology 2018 v.60 no.4 pp. 292-309
ISSN:
1672-9072
Subject:
Arabidopsis thaliana, correlation, cytokinins, genetic analysis, glucosides, hormones, indole acetic acid, phenotype, plant development, quantitative traits, root systems, roots, spectrometers, ultra-performance liquid chromatography
Abstract:
Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three‐fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length‐related traits—lateral root length and total root length—showed larger variations than lateral root number‐related ones. For root architecture, antagonistic interactions between hormones, for example, indole‐3‐acetic acid to trans‐zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible.
Agid:
5930522