Main content area

LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass

Cherubini, Francesco, Jungmeier, Gerfried
The international journal of life cycle assessment 2010 v.15 no.1 pp. 53-66
Panicum virgatum, acidification, bioethanol, biomass, biorefining, carbon dioxide, carbon sequestration, climate change, crop yield, drying, energy balance, energy content, environmental impact, eutrophication, feedstocks, fertilizer application, fossil fuels, fossils, grasses, greenhouse gas emissions, greenhouse gases, issues and policy, land resources, land use change, life cycle assessment, lignocellulose, manufacturing, methane, nitrogen fertilizers, nitrous oxide, perennials, plant establishment, prices, primary energy, soil, uncertainty
BACKGROUND, AIM, AND SCOPE: The availability of fossil resources is predicted to decrease in the near future: they are a non-renewable source, they cause environmental concerns, and they are subjected to price instability. Utilization of biomass as raw material in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, as well as for mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy, and biochemicals from switchgrass, a lignocellulosic crop. Results are compared with a fossil reference system producing the same products/services from fossil sources. MATERIALS AND METHODS: The biorefinery system is investigated using a Life Cycle Assessment approach, which takes into account all the input and output flows occurring along the production chain. This paper elaborates on methodological key issues like land use change effects and soil N₂O emissions, whose influence on final outcomes is weighted in a sensitivity analysis. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment has a focus on greenhouse gas (GHG) emissions and cumulative primary energy demand (distinguished into fossil and renewable), but other environmental impact categories (e.g., abiotic depletion, eutrophication, etc.) are assessed as well. RESULTS: The use of switchgrass in a biorefinery offsets GHG emissions and reduces fossil energy demand: GHG emissions are decreased by 79% and about 80% of non-renewable energy is saved. Soil C sequestration is responsible for a large GHG benefit (65 kt CO₂-eq/a, for the first 20 years), while switchgrass production is the most important contributor to total GHG emissions of the system. If compared with the fossil reference system, the biorefinery system releases more N₂O emissions, while both CO₂ and CH₄ emissions are reduced. The investigation of the other impact categories revealed that the biorefinery has higher impacts in two categories: acidification and eutrophication. DISCUSSION: Results are mainly affected by raw material (i.e., switchgrass) production and land use change effects. Steps which mainly influence the production of switchgrass are soil N₂O emissions, manufacture of fertilizers (especially those nitrogen-based), processing (i.e., pelletizing and drying), and transport. Even if the biorefinery chain has higher primary energy demand than the fossil reference system, it is mainly based on renewable energy (i.e., the energy content of the feedstock): the provision of biomass with sustainable practices is then a crucial point to ensure a renewable energy supply to biorefineries. CONCLUSIONS: This biorefinery system is an effective option for mitigating climate change, reducing dependence on imported fossil fuels, and enhancing cleaner production chains based on local and renewable resources. However, this assessment evidences that determination of the real GHG and energy balance (and all other environmental impacts in general) is complex, and a certain degree of uncertainty is always present in final results. Ranges in final results can be even more widened by applying different combinations of biomass feedstocks, conversion routes, fuels, end-use applications, and methodological assumptions. RECOMMENDATIONS AND PERSPECTIVES: This study demonstrated that the perennial grass switchgrass enhances carbon sequestration in soils if established on set-aside land, thus, considerably increasing the GHG savings of the system for the first 20 years after crop establishment. Given constraints in land resources and competition with food, feed, and fiber production, high biomass yields are extremely important in achieving high GHG emission savings, although use of chemical fertilizers to enhance plant growth can reduce the savings. Some strategies, aiming at simultaneously maintaining crop yield and reduce N fertilization application through alternative management, can be adopted. However, even if a reduction in GHG emissions is achieved, it should not be disregarded that additional environmental impacts (like acidification and eutrophication) may be caused. This aspect cannot be ignored by policy makers, even if they have climate change mitigation objectives as main goal.