PubAg

Main content area

Differentiation of low-affinity Na⁺ uptake pathways and kinetics of the effects of K⁺ on Na ⁺ uptake in the halophyte Suaeda maritima

Author:
Zhang, Jin-Lin, Flowers, Timothy J., Wang, Suo-Min
Source:
Plant and soil 2013 v.368 no.1-2 pp. 629-640
ISSN:
0032-079X
Subject:
Suaeda, crops, halophytes, potassium chloride, salinity, salt tolerance, sodium chloride, starvation, transporters
Abstract:
Background and aims: Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake. Methods: Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0-200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM). Results: Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the 'turning point', is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100-200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100-200 mM NaCl). Conclusions: The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100-200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways. © 2012 Springer Science+Business Media Dordrecht.
Agid:
595447