Main content area

A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

Spokas, Kurt A., Bogner, J., Chanton, J.
ARS USDA Submissions 2011
biogeochemical cycles, climate models, computer software, emissions, inventories, landfills, methane, microclimate, oxidation, prediction, soil temperature, California
We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventory Model) is a freely-available JAVA tool which models a typical annual cycle for CH4 emissions from site-specific daily, intermediate, and final landfill cover designs. Literature over the last decade has emphasized that the major factors controlling emissions in these highly-managed soil systems are the presence or absence of engineered gas extraction, gaseous transport rates as affected by the thickness and physical properties of cover soils, and methanotrophic CH4 oxidation in cover materials as a function of seasonal soil microclimate. Moreover, current IPCC national inventory models for landfill CH4 emissions based on theoretical gas generation have high uncertainties and lack comprehensive field validation. This new approach, which is compliant with IPCC “Tier III” criteria, has been field-validated at two California sites (Monterey County; Los Angeles County), with limited field validation at three additional California sites. CALMIM accurately predicts soil temperature and moisture trends with emission predictions within the same order of magnitude as field measurements, indicating an acceptable initial model comparison in the context of published literature on measured CH4 emissions spanning 7 orders of magnitude. In addition to regional defaults for inventory purposes, CALMIM permits user-selectable parameters and boundary conditions for more rigorous site-specific applications where detailed CH4 emissions, meteorological, and soil microclimate data exist.