PubAg

Main content area

Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface

Author:
Ye, Xin, Shao, Ting, Sun, Laixi, Wu, Jingjun, Wang, Fengrui, He, Junhui, Jiang, Xiaodong, Wu, Wei-Dong, Zheng, Wanguo
Source:
ACS applied materials & interfaces 2018 v.10 no.16 pp. 13851-13859
ISSN:
1944-8252
Subject:
hydrophilicity, nanomaterials, optical properties, perfluorocarbons, silica
Abstract:
In this work, antireflective and superhydrophilic subwavelength nanostructured fused silica surfaces have been created by one-step, self-masking reactive ion etching (RIE). Bare fused silica substrates with no mask were placed in a RIE vacuum chamber, and then nanoscale fluorocarbon masks and subwavelength nanostructures (SWSs) automatically formed on these substrate after the appropriate RIE plasma process. The mechanism of plasma-induced self-masking SWS has been proposed in this paper. Plasma parameter effects on the morphology of SWS have been investigated to achieve perfect nanocone-like SWS for excellent antireflection, including process time, reactive gas, and pressure of the chamber. Optical properties, i.e., antireflection and optical scattering, were simulated by the finite difference time domain (FDTD) method. Calculated data agree well with the experiment results. The optimized SWS show ultrabroadband antireflective property (up to 99% from 500 to 1360 nm). An excellent improvement of transmission was achieved for the deep-ultraviolet (DUV) range. The proposed low-cost, highly efficient, and maskless method was applied to achieve ultrabroadband antireflective and superhydrophilic SWSs on a 100 mm optical window, which promises great potential for applications in the automotive industry, goggles, and optical devices.
Agid:
5960653