Main content area

Field evaluation of three sources of genetic resistance to sudden death syndrome of soybean

Brzostowski, LillianF., Pruski, TimothyI., Hartman, GlenL., Bond, JasonP., Wang, Dechun, Cianzio, SilviaR., Diers, BrianW.
Theoretical and applied genetics 2018 v.131 no.7 pp. 1541-1552
Glycine max, alleles, chromosomes, cultivars, death, disease resistance, foliar diseases, genetic background, genetic resistance, parents, quantitative trait loci, soybean sudden death syndrome, soybeans
KEY MESSAGE : Despite numerous challenges, field testing of three sources of genetic resistance to sudden death syndrome of soybean provides information to more effectively improve resistance to this disease in cultivars. Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objective of our research was to map SDS resistance QTL and to test the effect of mapped resistance QTL on foliar symptoms when incorporated into elite soybean backgrounds. We mapped a QTL from Ripley to chromosome 10 (CHR10) and a QTL from PI507531 to chromosomes 1 and 18 (CHR1 and 18). Six populations were then developed to test the following QTL: cqSDS-001, with resistance originating from PI567374, CHR10, CHR1, and CHR18. The populations which segregated for resistant and susceptible QTL alleles were field tested in multiple environments and evaluated for SDS foliar symptoms. While foliar disease development was variable across environments and populations, a significant effect of each QTL on disease was detected within at least one environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL allele from the resistant parents was associated with greater resistance than the susceptible alleles for all QTL and backgrounds with the exception of the allele for CHR18, where the opposite occurred. This study highlights the importance and difficulties of evaluating QTL and the need for multi-year SDS field testing. The information presented in this study can aid breeders in making decisions to improve resistance to SDS.