PubAg

Main content area

A back-fitting algorithm to improve real-time flood forecasting

Author:
Zhang, Xiaojing, Liu, Pan, Cheng, Lei, Liu, Zhangjun, Zhao, Yan
Source:
Journal of hydrology 2018 v.562 pp. 140-150
ISSN:
0022-1694
Subject:
algorithms, basins, calibration, case studies, decision making, flood control, floods, hydrologic models, refining, stream flow, China
Abstract:
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China’s Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
Agid:
5971107