U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Application of the ligation-independent cloning (LIC) method

Wei Zhao, Haixia Hu, Laszlo Zsak, Qingzhong Yu, Zengqi Yang
Plasmid 2013 v.70 no.3 pp. 314-320
gene therapy, human cell lines, green fluorescent protein, complementary DNA, reverse transcriptase polymerase chain reaction, plasmids, Avian orthoavulavirus 1, molecular cloning, recombinant vaccines, pathogenesis, reporter genes
Newcastle disease virus (NDV) can cause serious diseases and substantial economic losses to the poultry industry. To gain a better understanding of NDV pathogenesis, several reverse genetics systems for different NDV strains have been established. However, the construction of infectious cDNA clone by conventional restriction digestion/ligation cloning methods is a time-consuming process and has many drawbacks by its nature. To address the problems, we employed a novel and robust ligation-independent cloning (LIC) method for efficient assembly of multiple DNA fragments. Using this method, we successfully generated a NDV minigenome construct within three weeks by assembling RT-PCR products of the VG/GA strain genomic termini and a cDNA coding for the green fluorescence protein (GFP), as a reporter, into a modified pBluescript vector. Co-transfection of the NDV minigenome with three supporting plasmids expressing the N, P, and L proteins into MVA-T7 infected HEp-2 cells and followed by infection with NDV VG/GA resulted in the minigenome replication, transcription, and packaging as evidenced by the reporter gene GFP expression. These results suggest that this LIC approach is a powerful tool for all sequence-independent DNA cloning and multi-DNA fragment assembly, which has a potential application for rapid development of gene therapy and recombinant vaccines.