U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Quantitation of protein-S-glutathionylation by LC-MS/MS: Correction for contaminating glutathione and glutathione disulfide

Michael R. Bukowski, Christopher Bucklin, Matthew J. Picklo
Analytical Biochemistry 2015 v.469 pp. 54-64
chemical reduction, glutathione, ions, liquid chromatography, liver, mass spectrometry, post-translational modification, proteins, rats
Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein–glutathione mixed disulfide (PSSG) is commonly quantified by reduction of the disulfide and detection of the resultant glutathione species. This methodology is susceptible to contamination by free unreacted cellular glutathione (GSH) species, which are present in 1000-fold greater concentration. A liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based method was developed for quantification of glutathione and glutathione disulfide (GSSG), which was used for the determination of PSSG in biological samples. Analysis of rat liver samples demonstrated that GSH and GSSG coprecipitated with proteins similar to the range for PSSG in the sample. The use of [13C2,5N]GSH and [13C4,5N2]GSSG validated these results and demonstrated that the release of GSH from PSSG did not occur during sample preparation and analysis. These data demonstrate that GSH and GSSG contamination must be accounted for when determining PSSG content in cellular/tissue preparations. A protocol for rinsing samples to remove the adventitious glutathione species is demonstrated. The fragmentation patterns for glutathione were determined by high-resolution mass spectrometry, and candidate ions for detection of PSSG on protein and protein fragments were identified.