U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Predictive model for growth of Clostridium perfringens during cooling of cooked beef supplemented with NaCl, sodium nitrite and sodium pyrophosphate

Vijay K. Juneja, Harry Marks, Tim Mohr, Harshavardhan H. Thippareddi
Journal of food processing & technology 2013 v.4 no.10 pp. 1-12
Clostridium perfringens, Food Safety and Inspection Service, compliance, cooked foods, cooling, curing (food products), ground beef, growth models, guidelines, heat treatment, pathogens, poultry meat, prediction, risk, salting, sodium chloride, sodium nitrite, sodium pyrophosphate, spore germination, temperature
This paper presents a model for predicting relative growth of C. perfringens in ground beef products at different percentages of salt (0%, 1%, 2% and 3%) and nitrite (0 and 200 ppm). Included in the experiments were different levels of sodium pyrophosphate (SPP). The results of the experiments indicates that salt was the primary variable in effecting the amount of growth seen, and that growth in general, was significantly affected by the presence of nitrite. The inclusion of SPP did not improve the model’s fit with observed results. The primary model is based on a common form of Baranyi’s growth curves and the secondary model is based on cardinal temperatures, relating maximum specific growth rates as a function of temperature. For predictions, the model employs 10 parameters: 9 for describing the secondary model for the specific growth rates and the 10th parameter, providing a value for the physiological constant of Baranyi’s growth curves. In comparison to the present USDA pathogen modeling program, the model provides similar predicted growths for uncured product (salt = 0% and nitrite = 0 ppm), and conservative (fail-safe) predictions for cured product (salt = 0%, nitrite = 200ppm). The model can be used by processors to evaluate the risk of C. perfringens spore germination and outgrowth during cooling (stabilization) deviations or in custom cooling schedules in case the processors cannot follow the USDA FSIS Compliance Guidelines (Appendix A) for Cooling of Heat-Treated Meat and Poultry Products (Stabilization).