U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Augmenting the Antifungal Activity of an Oxidizing Agent with Kojic Acid: Control of Penicillium Strains Infecting Crops

Jong H. Kim, Kathleen L. Chan
Molecules 2014 v.19 no.11 pp. 18448-18464
Penicillium expansum, Penicillium italicum, antifungal agents, antifungal properties, chemosensitization, disease control, heat, hydrogen peroxide, in vitro studies, kojic acid, minimum inhibitory concentration, mutants, oxidants, oxidation, plant pathogenic fungi, temperature, toxicity
Oxidative treatment is one of the strategies for preventing Penicillium contamination in crops/foods. The antifungal efficacy of hydrogen peroxide (H2O2; oxidant) was investigated in Penicillium strains by using kojic acid (KA) as a chemosensitizing agent, which can enhance the susceptibility of pathogens to antifungal agents. Co-application of KA with H2O2 (chemosensitization) resulted in the enhancement of antifungal activity of either compound, when compared to the independent application of each agent alone. Of note, heat enhanced the activity of H2O2 to a greater extent during chemosensitization, whereby the minimum inhibitory or minimum fungicidal concentrations of H2O2 was decreased up to 4 or 13 fold, respectively, at 35–45 °C (heat), when compared to that at 28 °C (normal growth temperature). However, heat didn’t increase the antifungal activity of KA, indicating specificity exists between heat and types of antifungals applied. The effect of chemosensitization was also strain-specific, where P. expansum (both parental and fludioxonil-resistant mutants) or P. italicum 983 exhibited relatively higher susceptibility to the chemosensitization, comparing to other Penicillium strains tested. Collectively, chemosensitization can serve as a potent antifungal strategy to lower effective dosages of toxic antifungal substances, such as H2O2. This can lead to coincidental lowering of environmental and health risks.