Main content area

Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis

Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., Chersich, S.
Engineering geology 2015 v.193 pp. 19-37
cohesion, engineering, hydrologic factors, hysteresis, infrastructure, landslides, models, monitoring, perched water table, prediction, safety factor, soil horizons, soil profiles, topographic slope, water content, Italy
Rainfall-induced shallow landslides can seriously affect cultivations and infrastructures and cause human losses. A continuous monitoring of unsaturated soil hydrological properties is needed to understand the effects of pore water pressure and water content on shallow landslides triggering and slope safety factor. In this work, the impact of water content, pore water pressure and hydrological hysteresis on safety factor reconstruction is analyzed by applying two different models (Lu and Godt's and SLIP models) to a monitored slope located in Oltrepò Pavese (Northern Italy). A shallow landslide event in the studied slope during the monitoring allowed for identifying the triggering mechanism and modeling the safety factor changes. The conditions of instability mechanism develop in periods with frequent rainfalls: the uprising of a perched water table in the soil profile gets nil or positive pore water pressure, which, linked with the nil effective soil cohesion of some soil horizons, allows for the shallow landslide triggering. The safety factor trends correctly predicted unstable conditions (safety factor≤1.0) in correspondence of the shallow landslide triggering time on the basis of both water content and pore water pressure. A better prediction gets when the safety factor is modeled considering the hysteresis effects. Modeling the safety factor on the basis of water content can make a good assessment of shallow failures triggering conditions only for failures in unsaturated soils and for completely saturated soils. Instead, considering pore water pressure, it is possible estimating safety factor changes linked with the development of positive pore water pressures, which can be linked in some cases to shallow landslide development.