PubAg

Main content area

Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels

Author:
Nimana, Balwinder, Canter, Christina, Kumar, Amit
Source:
Energy 2015 v.88 pp. 544-554
ISSN:
0360-5442
Subject:
bitumen, combustion, drainage, electricity, energy, engineering, gasoline, gravity, greenhouse gas emissions, greenhouse gases, inventories, life cycle assessment, oil sands, oils, refining, steam, surface mining, theoretical models, transportation, Canada
Abstract:
A comprehensive LCA (life cycle assessment) for transportation fuels (gasoline, diesel, and jet fuel) derived from Canada's oil sands was conducted, and all the current possible pathways from bitumen extraction to use in vehicles were explored. Authors, in earlier studies, have presented the energy consumption and GHG (greenhouse gas) emission results for individual unit operations-recovery, extraction, upgrading and refining. The LC (life cycle) inventory data for the current LCA study were obtained from theoretical model named FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs- based ModeL for Estimation of GreenHouse Gases in the Oil Sands), developed from fundamental engineering principles. The impact of the cogeneration of electricity in oil sands recovery, extraction, and upgrading on the LC GHG emissions of gasoline was explored. LC WTW (well-to-wheel) GHG emissions range from 106.8 to 116 g-CO2equivalent/MJ of gasoline, 100.5 to 115.2 g-CO2equivalent/MJ of diesel, and 96.4 to 109.2 g-CO2equivalent/MJ of jet fuel, depending on the pathway. Combustion emissions (64.7%–70.3%) are the largest constituent of WTW emissions for gasoline production; recovery (through surface mining and steam assisted gravity drainage) forms 7.2%–16% depending on the LC production process of gasoline.
Agid:
6036619