U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Development of a waterborne challenge model for Flavobacterium psychrophilum

Amy Long, Tyson R. Fehringer, Benjamin R. LaFrentz, Douglas R. Call, Kenneth D. Cain
FEMS microbiology letters 2014 v.359 no.2 pp. 154-160
Flavobacterium psychrophilum, Salmonidae, animal pathogenic bacteria, aquaculture, bacterial cold-water disease, culture media, disease outbreaks, disease prevention, fish, iron, microbial contamination, models, mortality, probability, strain differences, virulence, water pollution
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease and can cause significant mortality in salmonid aquaculture. To better evaluate disease prevention or treatment methods for F. psychrophilum in the laboratory, a waterborne challenge model that mimics a natural outbreak is needed. Here we report on the development of a waterborne challenge model for F. psychrophilum in which we incorporated variables that may influence challenge success: specifically, scarification prior to bacterial exposure and culture of F. psychrophilum under iron-limited culture conditions to potentially increase the probability of establishing disease. Additionally, two F. psychrophilum strains, CSF 259-93 and THC 02-90, were used in this model to test whether there were virulence differences between strains. Mortality was significantly higher in scarred fish than unscarred fish (81.5 vs. 19.4%), supporting the hypothesis that disruptions in the dermal layer enhance mortality in F. psychrophilum waterborne challenges. Although mortality differences were not significant between iron-replete and iron-limited treatments, mortality was high overall (> 30%). There was a significant difference in mortality between CSF 259-93 and THC 02-90 treatments, although both strains caused high mortality in injection challenges. In conclusion, this waterborne challenge model can be used to evaluate potential disease prevention and treatment methods.