PubAg

Main content area

Statistical Techniques to Analyze Pesticide Data Program Food Residue Observations

Author:
Szarka, Arpad Z., Hayworth, Carol G., Ramanarayanan, Tharacad S., Joseph, Robert S. I.
Source:
Journal of agricultural and food chemistry 2018 v.66 no.27 pp. 7165-7171
ISSN:
1520-5118
Subject:
USDA, United States Environmental Protection Agency, case studies, data collection, detection limit, environmental science, field experimentation, food availability, maximum residue limits, monitoring, statistical analysis, sweet peppers, thiamethoxam, United States
Abstract:
The U.S. EPA conducts dietary-risk assessments to ensure that levels of pesticides on food in the U.S. food supply are safe. Often these assessments utilize conservative residue estimates, maximum residue levels (MRLs), and a high-end estimate derived from registrant-generated field-trial data sets. A more realistic estimate of consumers’ pesticide exposure from food may be obtained by utilizing residues from food-monitoring programs, such as the Pesticide Data Program (PDP) of the U.S. Department of Agriculture. A substantial portion of food-residue concentrations in PDP monitoring programs are below the limits of detection (left-censored), which makes the comparison of regulatory-field-trial and PDP residue levels difficult. In this paper, we present a novel adaption of established statistical techniques, the Kaplan–Meier estimator (K–M), the robust regression on ordered statistic (ROS), and the maximum-likelihood estimator (MLE), to quantify the pesticide-residue concentrations in the presence of heavily censored data sets. The examined statistical approaches include the most commonly used parametric and nonparametric methods for handling left-censored data that have been used in the fields of medical and environmental sciences. This work presents a case study in which data of thiamethoxam residue on bell pepper generated from registrant field trials were compared with PDP-monitoring residue values. The results from the statistical techniques were evaluated and compared with commonly used simple substitution methods for the determination of summary statistics. It was found that the maximum-likelihood estimator (MLE) is the most appropriate statistical method to analyze this residue data set. Using the MLE technique, the data analyses showed that the median and mean PDP bell pepper residue levels were approximately 19 and 7 times lower, respectively, than the corresponding statistics of the field-trial residues.
Agid:
6042765