Main content area

Application of Anthocyanins from Blackcurrant (Ribes nigrum L.) Fruit Waste as Renewable Hair Dyes

Rose, Paul M., Cantrill, Victoria, Benohoud, Meryem, Tidder, Alenka, Rayner, Christopher M., Blackburn, Richard S.
Journal of agricultural and food chemistry 2018 v.66 no.26 pp. 6790-6798
Ribes nigrum, adsorption, anthocyanins, black currants, cations, dyeing, dyes, energy, fruits, glucosides, high performance liquid chromatography, industry, pressing, quinones, sorption isotherms, wastes
There is much concern about the toxicological effects of synthetic hair dyes. As an alternative approach, renewable waste blackcurrant (Ribes nigrum L.) fruit skins from the fruit pressing industry were extracted using acidified water with a solid-phase purification stage. Anthocyanin colorants were isolated in good yields (2–3% w/w) and characterized by HPLC. Sorption of anthocyanins onto hair followed a Freundlich isotherm; anthocyanin–anthocyanin aggregation interactions enabled high buildup on the substrate. Sorption energy of cyanidin-3-O-glucoside (monosaccharide) > cyanidin-3-O-rutinoside (disaccharide), but sorption properties of different anthocyanin glucosides were very similar. Intense blue-colored dyeing on hair could be achieved with λₘₐₓ₋ᵥᵢₛ at 580 nm, typical of the anionic quinonoid base; it is suggested that hair provides an environment that enables the stabilization of the anionic quinonoid base on adsorption through association with cations in the hair and copigmentation effects. Dyeings were stable to multiple washes.