PubAg

Main content area

Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils

Author:
El-Naggar, Ali, Lee, Sang Soo, Awad, Yasser Mahmoud, Yang, Xiao, Ryu, Changkook, Rizwan, Muhammad, Rinklebe, Jörg, Tsang, Daniel C.W., Ok, Yong Sik
Source:
Geoderma 2018 v.332 pp. 100-108
ISSN:
0016-7061
Subject:
Miscanthus sacchariflorus, agricultural land, biochar, buffering capacity, carbon, carbon dioxide, cation exchange capacity, clay, feedstocks, mineralization, organic matter, pH, rice straw, sandy loam soils, sandy soils, soil fertility, soil texture, trees, Korean Peninsula, Vietnam
Abstract:
The impact of biochar (BC) application on soil varies with BC feedstock and soil type. The objective of this study was to investigate the linkage between the properties and surface functionality of various BCs and their role in the rehabilitation of two infertile soils. Sandy loam (SL) and sandy (S) soils were collected from agricultural areas in Korea and Vietnam, respectively. The BCs of amur silvergrass residue (AB), paddy straw (PB), and umbrella tree (UB) were applied to the soils at a rate of 30 t ha−1 and incubated at 25 °C for 90 d. Soil carbon (C) mineralization was investigated by a periodic measurement of CO2 efflux. Soil texture strongly influenced the CO2 efflux more than the BC type as indicated by 2–4 folds increase in cumulative CO2-C efflux from the SL soil compared to that from the S soil. For the PB-, AB-, and UB-treated S soils, the values of cation exchange capacity (CEC) were increased by 906%, 180%, and 130%, respectively, compared to that of the control; however, for the PB-treated SL soil, only a 13% increase in CEC was found. The pH in the PB-treated S soil sharply increased by 4.5 units compared to that in the control, due to a high concentration of readily soluble compounds in the PB and the low buffering capacity of the S soil. The S soil was more sensitive to the addition of BCs than the SL soil. A more prominent improvement in soil fertility can be achieved by BC application to the sandy soil having low clay, nutrient, and organic matter contents.
Agid:
6051912