PubAg

Main content area

Identification of transcription factors from NF-Y, NAC, and SPL families responding to osmotic stress in multiple tomato varieties

Author:
Filichkin, Sergei A., Ansariola, Mitra, Fraser, Valerie N., Megraw, Molly
Source:
Plant science 2018 v.274 pp. 441-450
ISSN:
0168-9452
Subject:
crops, cultivars, data collection, drought tolerance, gene expression regulation, messenger RNA, osmotic stress, photosynthesis, rice, salt stress, sequence analysis, stress response, tomatoes, transcription factors, transpiration, water stress
Abstract:
Identifying osmotic stress-responsive transcription factors (TFs) can facilitate discovery of master regulators mediating salt and/or drought tolerance. To date, few RNA-seq datasets for high resolution time course of salt or drought stress treatments are publicly available for certain crop species. However, such datasets may be available for other crops, and in combination with orthology analysis may be used to infer candidate osmotic stress regulators across distantly related species. Here, we demonstrate the utility of this approach for identification and validation of osmotic stress-responsive transcription factors in tomato. First, we developed physiologically calibrated salt and dehydration-responsive systems for tomato cultivars using real time measurements of transpiration rate and photosynthetic efficiency. Next, we identified differentially expressed TFs in rice using raw RNA-seq datasets for a publicly available salt stress time course. Putative salt stress-responsive TFs in tomato were then inferred based on their orthology with the transcription factors upregulated by salt in rice. Finally, using our osmotic stress system, we experimentally validated stress-responsive expression of predicted tomato candidates representing NUCLEAR FACTOR Y, SQUAMOSA PROMOTER BINDING, and NAC domain TF families. Quantification of transcript copy numbers confirmed that mRNAs encoding all three TFs were strongly upregulated not only by salt but also by drought stress. Induction by both salt and dehydration occurred in a temporal manner across diverse tomato cultivars, suggesting that the identified TFs may play important roles in regulating osmotic stress responses.
Agid:
6053206