Main content area

Research on a combined model based on linear and nonlinear features - A case study of wind speed forecasting

Zhang, Kequan, Qu, Zongxi, Dong, Yunxuan, Lu, Haiyan, Leng, Wennan, Wang, Jianzhou, Zhang, Wenyu
Renewable energy 2019 v.130 pp. 814-830
algorithms, case studies, electrical equipment, fish, models, planning, prediction, swarms, system optimization, time series analysis, wind power, wind speed, China
As one of the most promising sustainable energy sources, wind energy is being paid more attention by the researchers. Because of the volatility and instability of wind speed series, wind power integration faces a severe challenge; thus, an accurate wind energy forecasting plays a key role in smart grid planning and management. However, many traditional forecasting models do not consider the necessity and importance of data preprocessing and neglect the limitation of using a single forecasting model, which leads to poor forecasting accuracy. To solve these problems, a novel combined model based on two linear and four nonlinear forecasting algorithms is proposed to adapt both the linear and nonlinear characteristics of the wind energy time series. In addition, a modified Artificial Fish Swarm Algorithm and Ant Colony Optimization (AFSA-ACO) algorithm is proposed and employed to determine the optimal weight coefficients of the combined models. To verify the forecasting performance of the developed combined model, several experiments were implemented by using 10-min interval wind speed data in Shandong, China. Then, one-step (10-min), three-step (30-min) and five-step (50-min) predictions were conducted. The experimental results indicate that the developed combined model is remarkably superior to all benchmark models for the high precision and stability of wind-speed predictions.