Main content area

Model Selection Using BICePs: A Bayesian Approach for Force Field Validation and Parameterization B

Ge, Yunhui, Voelz, Vincent A.
The Journal of physical chemistry 2018 v.122 no.21 pp. 5610-5622
Bayesian theory, Gibbs free energy, algorithms, energy, models, nuclear magnetic resonance spectroscopy, peptides, physical chemistry, prediction
The Bayesian Inference of Conformational Populations (BICePs) algorithm reconciles theoretical predictions of conformational state populations with sparse and/or noisy experimental measurements. Among its key advantages is its ability to perform objective model selection through a quantity we call the BICePs score, which reflects the integrated posterior evidence in favor of a given model, computed through free energy estimation methods. Here, we explore how the BICePs score can be used for force field validation and parametrization. Using a 2D lattice protein as a toy model, we demonstrate that BICePs is able to select the correct value of an interaction energy parameter given ensemble-averaged experimental distance measurements. We show that if conformational states are sufficiently fine-grained, the results are robust to experimental noise and measurement sparsity. Using these insights, we apply BICePs to perform force field evaluations for all-atom simulations of designed β-hairpin peptides against experimental NMR chemical shift measurements. These tests suggest that BICePs scores can be used for model selection in the context of all-atom simulations. We expect this approach to be particularly useful for the computational foldamer design as a tool for improving general-purpose force fields given sparse experimental measurements.