U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept

Stephen R. Hughes, Juan Carlos López-Núñez, Marjorie A. Jones, Bryan R. Moser, Elby J. Cox, Mitch Lindquist, Luz Ángela Galindo-Leva, Néstor M. Riaño-Herrera, Nelson Rodriguez-Valencia, Fernando Gast, David L. Cedeño, Ken Tasaki, Robert C. Brown, Al Darzins, Lane Brunner
Applied microbiology and biotechnology 2014 v.98 no.20 pp. 8413-8431
Kluyveromyces marxianus, Rhodotorula glutinis, Saccharomyces cerevisiae, Yarrowia lipolytica, ammonia, biochar, bioethanol, biorefining, biotransformation, corn, crops, employment, environmental impact, environmental sustainability, feeds, fermentation, fermenters, fertilizers, food processing, free amino acids, humus, lignin, lignocellulose, marketing, methane, mutants, oils, people, peptides, proteinases, pulping, sugarcane, sugars, wastes, yeasts
The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.