PubAg

Main content area

Analysis of mercury adsorption at the gibbsite-water interface using the CD-MUSIC model

Author:
Park, Chang Min
Source:
Environmental science and pollution research international 2018 v.25 no.22 pp. 21721-21730
ISSN:
0944-1344
Subject:
acidity, adsorption, aluminum, aluminum hydroxide, anthropogenic activities, chlorides, data collection, gibbsite, ionic strength, ions, ligands, mercury, nitrates, pH, simulation models, toxic substances
Abstract:
Mercury (Hg), one of the most toxic substances in nature, has long been released during the anthropogenic activity. A correct description of the adsorptive behavior of mercury is important to gain a better insight into its fate and transport in natural mineral surfaces, which will be a prerequisite for the development of surface complexation model for the adsorption processes. In the present study, simulation experiments on macroscopic Hg(II) sorption by gibbsite (α-Al(OH)₃), a representative aluminum (hydr)oxide mineral, were performed using the charge distribution and multi-site complexation (CD-MUSIC) approach with 1-pK triple plane model (TPM). For this purpose, several data sets which had already been reported in the literature were employed to analyze the effect of pH, ionic strength, and co-exisiting ions (NO₃⁻ and Cl⁻) on the Hg(II) adsorption onto gibbsite. Sequential optimization approach was used to determine the acidity and asymmetric binding constants for electrolyte ions and the affinity constants of the surface species through the model simulation using FITEQLC (a modified code of FITEQL 4.0). The model successfully incorporated the presence of inorganic ligands at the dominant edge (100) face of gibbsite with consistent surface species, which was evidenced by molecular scale analysis. The model was verified with an independent set of Hg(II) adsorption data incorporating carbonate binding species in an open gibbsite-water system.
Agid:
6072272