Main content area

Membrane fouling in ultrafiltration of natural water after pretreatment to different extents

Ao, Lu, Liu, Wenjun, Zhao, Lin, Wang, Xiaomao
Journal of environmental sciences (China) 2016 v.43 pp. 234-243
biopolymers, carbon, fouling, polysaccharides, proteins, sand, sand filters, surface water, turbidity, ultrafiltration
The combined fouling during ultrafiltration (UF) of surface water pretreated to different extents was investigated to disclose the roles of polysaccharides, proteins, and inorganic particles in UF membrane fouling. Both reversible and irreversible fouling decreased with enhanced pretreatment (biologically active carbon (BAC) treatment and sand filtration). The sand filter effluent fouled the membrane very slowly. The UF membrane removed turbidity to less than 0.1 nephelometric turbidity unit (NTU), reduced polysaccharides by 25.4%–29.9%, but rejected few proteins. Both polysaccharides and inorganic particles were detected on the fouled membranes, but inorganic particles could be effectively removed by backwashing. The increase of turbidity in the sand filter effluent to 3.05 NTU did not significantly increase the fouling rate, but an increase in the turbidity in the BAC effluent to 6.11 NTU increased the fouling rate by more than 100%. The results demonstrated that the polysaccharide, not the protein, constituents of biopolymers were responsible for membrane fouling. Membrane fouling was closely associated with a small fraction of polysaccharides in the feed water. Inorganic particles exacerbated membrane fouling only when the concentration of fouling–inducing polysaccharides in the feed water was relatively high. The combined fouling was largely reversible, and polysaccharides were the predominant substances responsible for irreversible fouling.