Main content area

Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag

Li, Yang, Liu, Lulu, Guo, Min, Zhang, Mei
Journal of environmental sciences (China) 2016 v.47 pp. 14-22
acidolysis, arc furnaces, hydrochloric acid, liquids, nanoparticles, nanorods, pH, photocatalysis, photocatalysts, photolysis, rhodamines, slags, titanium dioxide
TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.