Main content area

Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species

Wyse, Sarah V., Perry, George L. W., Curran, Timothy J.
Ecosystems 2018 v.21 no.5 pp. 886-900
Hakea, Ulex europaeus, botanical composition, ecological invasion, ecosystems, fire regime, flammability, fuels, fuels (fire ecology), indigenous species, invasive species, plants (botany), shoots, New Zealand
Invasive species can cause shifts in vegetation composition and fire regimes by initiating positive vegetation-fire feedbacks. To understand the mechanisms underpinning these shifts, we need to determine how invasive species interact with other species when burned in combination and thus how they may influence net flammability in the communities they invade. Previous studies using litter and ground fuels suggest that flammability of a species mixture is nonadditive and is driven largely by the more-flammable species. However, this nonadditivity has not been investigated in the context of plant invasions nor for canopy fuels. Using whole shoots, we measured the flammability of indigenous-invasive species pairs for six New Zealand indigenous and four globally invasive plant species, along with single-species control burns. Our integrated measure of flammability was clearly nonadditive, and the more-flammable species per pairing had the stronger influence on flammability in 83% of combinations. The degree of nonadditivity was significantly positively correlated with the flammability difference between the species in a pairing. The strength of nonadditivity differed among individual flammability components. Ignitability and combustibility were strongly determined by the more-flammable species per pair, yet both species contributed more equally to consumability and sustainability. Our results suggest mechanisms by which invasive species entrain positive vegetation-fire feedbacks that alter ecosystem flammability, enhancing their invasion. Of the species tested, Hakea sericea and Ulex europaeus are those most likely to increase the flammability of New Zealand ecosystems and should be priorities for management.