PubAg

Main content area

Guinea pig ascorbate status predicts tetrahydrobiopterin plasma concentration and oxidation ratio in vivo

Author:
Mortensen, Alan, Hasselholt, Stine, Tveden-Nyborg, Pernille, Lykkesfeldt, Jens
Source:
Nutrition research 2013 v.33 no.10 pp. 859-867
ISSN:
0271-5317
Subject:
ascorbic acid, ascorbic acid deficiency, blood, correlation, dehydroascorbic acid, diet, elderly, euthanasia, guinea pigs, heart, high performance liquid chromatography, humans, ingestion, models, nitric oxide, nitric oxide synthase, oxidation, vasodilation
Abstract:
Tetrahydrobiopterin (BH₄) is an essential co-factor of nitric oxide synthases and is easily oxidized to dihydrobiopterin (BH₂) which promotes endothelial nitric oxide synthase uncoupling and deleterious superoxide production. Vitamin C has been shown to improve endothelial function by different mechanisms, some involving BH₄. The hypothesis of the present study was that vitamin C status, in particular low levels, influences biopterin redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C and was therefore used as model. Seven day old animals (n = 10/group) were given a diet containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60–64 days. Blood samples were drawn from the heart and analyzed for ascorbate, dehydroascorbic acid (DHA), BH₄ and BH₂ by high-performance liquid chromatography. Plasma BH₄ levels were found to be significantly lower in animals fed 100 ppm vitamin C compared to all other groups (P < .05 or less). BH₂ levels were not significantly different between groups but the BH₂-to-BH₄ ratio was higher in the group fed 100 ppm vitamin C (P < .001 all cases). Significant positive correlations between BH₄ and ascorbate and between BH₂-to-BH₄ ratio and DHA were observed (P < .0001 both cases). Likewise, BH₂-to-BH₄ ratio was negatively correlated with ascorbate (P < .0001) as was BH₄ and DHA (P < .005). In conclusion, the redox status of plasma biopterins, essentially involved in vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH₄ oxidation which may promote endothelial dysfunction.
Agid:
608630