Main content area

Monitoring autophagy in wheat living cells by visualization of fluorescence protein-tagged ATG8

Li, Kaixin, Liu, Yanni, Yu, Baojia, Yang, Wenwen, Yue, Jieyu, Wang, Huazhong
Plant cell, tissue, and organ culture 2018 v.134 no.3 pp. 481-489
Triticum aestivum, animals, autophagy, biogenesis, fluorescence, green fluorescent protein, leaves, mesophyll, monitoring, protoplasts, red fluorescent protein, vacuoles, wheat
Autophagy is a highly conserved eukaryotic degradation process during which bulk cytoplasmic materials are transported by double-membrane autophagosomes into the vacuole for degradation. Methods of monitoring autophagy are indispensable in studying the mechanism and functions of autophagy. AuTophaGy-related protein 8 (ATG8) functions in autophagosome assembly by decorating on autophagic membranes, and the inner membrane-bound ATG8 proteins enter the vacuole via active autophagy flux. Fluorescence protein (FP)-tagged forms of ATG8 have been explored as visual markers to monitor autophagy in animals and several plant species. Here, we evaluated and modified this FP-ATG8-based autophagy monitoring method in wheat (Triticum aestivum L.) by fluorescence observation of green fluorescence protein (GFP)-tagged and Discosoma red fluorescent protein (DsRED)-tagged forms of one wheat ATG8, TaATG8h, in wheat mesophyll protoplasts. Under a nutrient-starvation condition, punctate GFP/DsRED- TaATG8h fluorescence representing autophagosomes was clearly observed in the cytoplasm. The accumulation of GFP-TaATG8h-labeled autophagosomes was impaired by the autophagosome biogenesis inhibitor 3-methyladenine but enhanced by the vacuolar degradation inhibitor concanamycin A. In addition, accumulated spreading fluorescence was observed in the vacuole, indicating active autophagy fluxes which led to continuous degradation of GFP/DsRED-TaATG8h fusions and release of protease-tolerant free GFP/DsRED proteins in the vacuole. To observe FP-tagged TaATG8h in other types of wheat cell, we also expressed GFP-TaATG8h in leaf epidermal cells. Consistent with its performance in protoplasts, GFP-TaATG8h showed punctate fluorescence representing autophagosomes in leaf epidermal cells. Taken together, our results proved the feasibility of using FP-tagged ATG8 to monitor both autophagosome accumulation and autophagy flux in living wheat cells.