U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Dissection of genomic correlation matrices of US Holsteins using multivariate factor analysis

N.P.P. Macciotta, C. Dimauro, D.J. Null, G. Gaspa, M. Cellesi, J.B. Cole
Journal of animal breeding and genetics 2015 v.132 no.1 pp. 9-20
Holstein, alleles, body conformation, bulls, calving, covariance, factor analysis, feet, lipid content, loci, longevity, milk composition, milk yield, prediction, pregnancy rate, protein content, quantitative trait loci, sires, United States
The aim of this study was to compare correlation matrices between direct genomic predictions for 31 traits at the genomic and chromosomal levels in US Holstein bulls. Multivariate factor analysis carried out at the genome level identified seven factors associated with conformation, longevity, yield, feet and legs, fat and protein content traits. Some differences were found at the chromosome level; variations in covariance structure on BTA 6, 14, 18 and 20 were interpreted as evidence of segregating QTL for different groups of traits. For example, milk yield and composition tended to join in a single factor on BTA 14, which is known to harbour the DGAT1 locus that affects these traits. Another example was on BTA 18, where a factor strongly correlated with sire calving ease and conformation traits was identified. It is known that in US Holstein, there is a segregating QTL on BTA18 influencing these traits. Moreover, a possible candidate gene for daughter pregnancy rate was suggested for BTA28. The methodology proposed in this study could be used to identify individual chromosomes, which have covariance structures that differ from the overall (whole genome) covariance structure. Such differences can be difficult to detect when a large number of traits are evaluated, and covariances may be affected by QTL that do not have large allele substitution effects.