Main content area

Identification and characterization of oxidoreductase component (NdmD) of methylxanthine oxygenase system in Pseudomonas sp. NCIM 5235

Retnadhas, Sreeahila, Gummadi, Sathyanarayana N.
Applied microbiology and biotechnology 2018 v.102 no.18 pp. 7913-7926
Escherichia coli, NADH dehydrogenase, Pseudomonas, caffeine, catalytic activity, chromatography, enzyme activity, evolution, genes, genetic vectors, molecular weight, nickel, oxygenases, pH, substrate specificity, xenobiotics
Pseudomonas sp. NCIM 5235 is a caffeine-degrading bacterial strain that metabolizes caffeine by sequential demethylation using methylxanthine demethylases. These enzymes belong to the class of two-component Rieske oxygenases and require an oxidoreductase, NdmD, for efficient catalysis. NdmD in Pseudomonas sp. has a unique domain fusion in its N-terminal that is not observed in any other Rieske oxygenase reductases reported so far. In this report, a ~ 1.7 kb ndmD gene from the gDNA of Pseudomonas sp. has been isolated and has been cloned in a pET28a expression vector. Soluble NdmD was over-expressed in Escherichia coli BL21 cells and purified by Ni²⁺ NTA chromatography. Monomeric molecular mass of the protein was found to be ~ 65 kDa and optimal activity was observed at 35 °C and pH 8.0. It showed broad substrate specificity with highest Kcₐₜ/kₘ of 490.8 ± 17.7 towards cytochrome c. To determine the role of N-terminal Rieske domain in its reductase activity, two deletion constructs Δ114NdmD and Δ250NdmD were made. Cytochrome c reductase (ccr) activity of the NdmD constructs and demethylase activity of NdmA in the presence of NdmD constructs showed that there is no significant difference in the catalytic activity of NdmD upon deletion of its N-terminal Rieske domain. However, there might be some functional and evolutionary significance for the fusion of Rieske domain to NdmD and we hypothesize that this domain fusion is an intermediate phase of evolution towards the development of a more efficient enzyme system for xenobiotic degradation.