Main content area

Discovery of artificial VIPR2-antagonist peptides possessing receptor- and ligand-selectivity

Sakamoto, Kotaro, Koyama, Ryokichi, Kamada, Yusuke, Miwa, Masanori, Tani, Akiyoshi
Biochemical and biophysical research communications 2018 v.503 no.3 pp. 1973-1979
antagonists, binding capacity, calcium, central nervous system, drugs, humans, inhibitory concentration 50, ligands, mice, physiology, polypeptides, rats, schizophrenia, therapeutics, vasoactive intestinal peptide, vasoactive intestinal peptide receptors
Vasoactive intestinal peptide receptor 2 (VIPR2, also known as VPAC2) is a class B G-protein coupled receptor (GPCR) and plays important roles in the physiology of central nervous system (CNS) by interaction with natural ligands; vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Because it has been reported that high-expression and/or overactivation of VIPR2 link to schizophrenic symptoms, VIPR2 antagonists could be good drug candidates for schizophrenia therapeutics. In this study, we discovered several artificial peptides that antagonize both human and rodent VIPR2 with selectivities against receptor subtypes VIPR1 (also known as VPAC1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). Of them, the representative 16-mer cyclic peptide VIpep-3 (Ac-CPPYLPRRLCTLLLRS-OH) exhibited strong binding affinity with KD value of 41 nM to extracellular domain of human VIPR2 in SPR analysis and showed potent antagonist activity with IC50 values of 47 nM (human), 180 nM (mouse), and 44 nM (rat) against VIP–VIPR2 signal in cell-based Ca influx assay. This is not only the first report on artificial VIPR2-selective antagonist peptides but also good example of the effective approach to discover novel antagonist against class B GPCR. Our peptides will contribute to study and development of the novel CNS drugs targeting to VIPR2.