Main content area

Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization

Cui, Yongyong, Bao, Shenxu, Zhang, Yimin, Duan, Jihuan
Chemosphere 2018 v.212 pp. 34-40
activated carbon, adsorption, aluminum, anion exchange resins, aqueous solutions, cation exchange resins, deionization, electric power, electrochemistry, electrodes, ion exchange, metal ions, pH, vanadium, wettability
Three kinds of anion exchange resins (AERs) (D201, D301, D314) and one kind of cation exchange resin (D860) were used with activated carbon (AC) to fabricated the ion exchange resin-AC (IER/AC) composite electrodes in capacitive deionization (CDI) for selective adsorption of V(V). The characteristics of four kinds of composite electrodes, such as wettability, pore distribution and electrochemical properties, indicates IER/AC composite has great potential as electrode materials for the electro-adsorption in CDI. The pH of solution has apparent influence on the adsorption capacity of the composite electrodes for V(V) because of the various V(V) species in the solution with different pH. The reduction rate of V(V) on IER/AC electrodes mainly relates to the amount of VO2+ in solution. The adsorption capacity of AER/AC electrodes for V(V) is slightly affected by the applied voltage may be due to that the adsorption of V(V) is mainly dependent on ion exchange with AERs and only a minority of V(V) is adsorbed by electrostatic adsorption. The adsorbed V(V) on D860/AC electrode decreases with the rising applied voltage because the pH increases with the increase of voltage. The separation of V(V) from V(V), Al and P indicates that the selective adsorption capability of IER/AC composite electrode is related to the migration rate of V(V), Al, P at different voltages and the selectivity of resins. This study may provide reference for recovering and separating metal ions from aqueous solution with CDI.