U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines

Tyamagondlu V. Venkatesh, George G. Harrigan, Tim Perez, Sherry Flint-Garcia
Journal of agricultural and food chemistry 2015 v.63 no.21 pp. 5282-5295
Zea mays, starch, discriminant analysis, community development, alleles, amino acids, beta-carotene, chromosome mapping, corn, data collection, fatty acids, hybrids, inbred lines, landraces, minerals, phytic acid, plant breeding, raffinose, tocopherols, New York, South America
The present study provides an assessment of the compositional diversity in maize B73 hybrids derived both from the Nested Association Mapping (NAM) founder lines and from a diverse collection of landrace accessions from North and South America. The NAM founders represent a key population of publicly available lines that are used extensively in the maize community to investigate the genetic basis of complex traits. Landraces are also of interest to the maize community as they offer the potential to discover new alleles that could be incorporated into modern maize lines. The compositional analysis of B73 hybrids from the 25 NAM founders and 24 inbred lines derived from landraces included measurements of proximates (protein, fat, ash, and starch), fibers, minerals, amino acids, fatty acids, tocopherols (α-, γ-, and δ-), β-carotene, phytic acid, and raffinose. Grain was harvested from a replicated trial in New York, USA. For each data set (NAM and landrace) canonical discriminant analysis allowed separation of distinct breeding groups (tropical, temperate, flint, mixed/intermediate) within each data set. Overall, results highlighted extensive variation in all composition components assessed for both sets of hybrids. The variation observed for some components within the landraces may therefore be of value for increasing their levels in modern maize lines. The study described here provided significant information on contributions of conventional breeding to crop compositional variation, as well as valuable information on key genetic resources for the maize community in the development of new improved lines.