Main content area

Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems

Kim, Jong Suk, Boardman, Richard D., Bragg-Sitton, Shannon M.
Applied energy 2018 v.228 pp. 2090-2110
case studies, clean energy, electricity, electrolysis, equipment, greenhouse gases, hydrogen, models, oxygen, steam, thermal energy, uncertainty, value-added products, wind power
A high-temperature steam electrolysis (HTSE) plant is proposed as a flexible load resource to be integrated with a light water reactor (LWR) in nuclear-renewable hybrid energy systems (N-R HESs). This integrated energy system is capable of dynamically apportioning electrical and thermal energy on an industrial scale to meet both grid demand and energy needs in the HTSE plant without generating greenhouse gases. A dynamic performance analysis of such a system is carried out to evaluate its technical feasibility and benefits, and safety operating under highly variable conditions requiring flexible output. To support the dynamic analysis, special emphasis is given here to the modeling and control design of the HTSE process, which employs planar solid oxide electrolysis cells, coupled to an LWR. The proposed model includes practical constraints, such as operating limits of equipment, and allows the simulation of transient response of the LWR/HTSE integration case with high penetration of renewable resources. Simulation results involving several case studies show that the HTSE integrated N-R HESs could lead to efficient utilization of clean energy generation sources at levels that maximize profits, i.e., steady-state operation of a nuclear reactor and high penetration of solar or wind energy without curtailment, by providing dispatchable electricity to the grid and producing alternative value-added products (hydrogen and oxygen). The results also indicate that the system can provide various types of ancillary services (i.e., regulation, operating reserves, and load following) to support grid stability while satisfying its operating constraints and control objectives; thus, it is capable of effectively and economically mitigating the increasing levels of dynamic variability and uncertainty introduced by renewables.