Main content area

Crustacean hyperglycemic hormones directly modulate the immune response of hemocytes in shrimp Litopenaeus vannamei

Wang, Lin, Chen, Hao, Xu, Jianchao, Xu, Qingsong, Wang, Mengqiang, Zhao, Depeng, Wang, Lingling, Song, Linsheng
Fish & shellfish immunology 2017 v.62 pp. 164-174
Litopenaeus vannamei, White spot syndrome virus, crustin, fish, gain-of-function mutation, glucose, hemocytes, immune response, immunomodulation, insulin, metabolism, pathogens, recombinant proteins, shellfish, shrimp, superoxide dismutase
A robust immune response against invading pathogens is crucial for host to survive, which depends greatly on the well balance of metabolism. Increasing evidence has indicated that some metabolic hormones, such as insulin, could modulate immune responses directly. Crustacean hyperglycemic hormone (CHH) family is a group of ecdysozoans-specific peptide hormone involved in glucose metabolism and other biological events. In the present study, two members of CHH family (designated as LvCHH I and LvCHH II) in shrimp Litopenaeus vannamei with one and two crustacean neurohormone domains respectively were chosen to investigate their putative modulatory roles in both glucose metabolism and immune response. LvCHH I and LvCHH II were both expressed in the sinus gland and lamina ganglionalis of eyestalks and were significantly induced after white spot syndrome virus (WSSV) infection. Meanwhile, significant increases of hemolymph glucose levels were observed in shrimp at 12 and 24 h after WSSV infection while the glucose inside the hemocytes decreased at 6 h and then increased at 12 h. Gain-of-function of rLvCHHs was subsequently conducted in vivo by injecting the recombinant proteins (rLvCHH I and rLvCHH II). The hemolymph glucose increased significantly from 0.5 h to 3 h after the shrimps received an injection of rLvCHH I, while it decreased at 0.5 h and increased afterward at 3 h post rLvCHH II injection. At the meantime, significant decreases of reactive oxygen species level in hemocytes were observed at 3 h and 6 h post rLvCHH I injection, while it remained unchanged in rLvCHH II injection group. rLvCHH I and rLvCHH II could bind to the cytomembrane of primary shrimp hemocytes in vitro, and the expressions of superoxide dismutase and LvRelish increased when the hemocytes were incubated with rLvCHH I for 3 h. Meanwhile, the expression of antimicrobial peptides, crustin and penaeidin-4, were also induced by rLvCHH I and rLvCHH II. These results demonstrated that host immune response, in addition to glucose metabolism, could be directly modulated by LvCHH family, and the present study provided new insights into the immunomodulation role of metabolic hormones in invertebrate.