PubAg

Main content area

Effect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study

Author:
McDonald, Tegan Krista, Yeaman, Sam
Source:
Journal of evolutionary biology 2018 v.31 no.9 pp. 1386-1399
ISSN:
1010-061X
Subject:
genetic variation, habitat fragmentation, models, mutation, population size, prediction, quantitative traits, spatial variation, variance
Abstract:
The paradox of high genetic variation observed in traits under stabilizing selection is a long‐standing problem in evolutionary theory, as mutation rates appear too low to explain observed levels of standing genetic variation under classic models of mutation–selection balance. Spatially or temporally heterogeneous environments can maintain more standing genetic variation within populations than homogeneous environments, but it is unclear whether such conditions can resolve the above discrepancy between theory and observation. Here, we use individual‐based simulations to explore the effect of various types of environmental heterogeneity on the maintenance of genetic variation (VA) for a quantitative trait under stabilizing selection. We find that VA is maximized at intermediate migration rates in spatially heterogeneous environments and that the observed patterns are robust to changes in population size. Spatial environmental heterogeneity increased variation by as much as 10‐fold over mutation–selection balance alone, whereas pure temporal environmental heterogeneity increased variance by only 45% at max. Our results show that some combinations of spatial heterogeneity and migration can maintain considerably more variation than mutation–selection balance, potentially reconciling the discrepancy between theoretical predictions and empirical observations. However, given the narrow regions of parameter space required for this effect, this is unlikely to provide a general explanation for the maintenance of variation. Nonetheless, our results suggest that habitat fragmentation may affect the maintenance of VA and thereby reduce the adaptive capacity of populations.
Agid:
6123421